In yesterday’s New York Times, I wrote about a new paper in which scientists report the evolution of single-celled yeast into multicellular snowflake-like “bodies.” Most (but not all) of the experts I contacted for the story had high praise for the study. (It also won an award when it was presented as a talk over the summer at the Society for the Study of Evolution.) Once the story appeared, however, some scientists took to Twitter to express their skepticism. As much as I like Twitter, this is one of the situations where it fails. You can’t have a conversation about genetics, lab strains versus wild types, etc., in 140 character chunks. At least not very satisfying ones.
Author: Matt Kristoffersen
In the history of life, single-celled microbes have evolved into multicellular bodies at least 25 times. In our own lineage, our ancestors crossed over some 700 million years ago. In tomorrow’s New York Times, I write about a new study in which single-celled yeast evolved into multicellular forms–completely with juvenile and adult forms, different cell types, and the ability to split off propagules like plant cuttings. All this in a matter of weeks.Check it out.
Continue reading “Evolving Bodies: My new story in tomorrow’s New York Times”
Each year, literary agent and science salonista John Brockman poses a question about science and gets a slew of answers from scientists, writers, and other folks. This year’s question is
WHAT IS YOUR FAVORITE DEEP, ELEGANT, OR BEAUTIFUL EXPLANATION?
Brockman got 187 responses, totaling some 126,700 words. A book, you say! Well, if this year is like previous ones, this year’s answers will indeed become a book. But in the meantime, you can browse the answers for yourself, perhaps plucking out those of your favorite people. (Fellow Discover blogger cosmologist Sean Carroll chooses Einstein’s explanation of gravity, for example.)
Continue reading “A Hot Young Earth: My Answer to the Annual Edge Question”
Drew Berry is one of the great movie-makers of the molecular world. He makes gorgeous computer visualizations of DNA, proteins, and the various goings-on inside the cell. Last night I spent a little time watching a new TEDx talk of his just posted online. My first thought was, “Why didn’t I get to see these movies when I was learning about biology as a kid? Life is unfair.” Compared to the flat cartoons of textbooks, or even the crude animations in documentaries of yore, Berry’s work seems to come from some advanced alien civilization.
Cancer evolves. Those two words may sound strange together. Sure, birds evolve. Bacteria evolve. But cancer? The trouble arises from the fact that cancers, unlike birds and bacteria, are not free-living organisms. They start out as cells inside a person’s body and stay there, until they’re either wiped out or the person dies.*
Yet the same forces that drive the evolution of free-living organisms can also drive cancer cells to become more aggressive and dangerous. Evolution becomes our inner foe if mutations disable a cell’s self-restraint. The cell multiplies. Sometimes a new mutation arises in its descendants. If the mutations allow the cancer to grow faster, the cells carrying it will take over the population of cancerous cells. Natural selection and other processes that drive evolution on the outside start driving it on the inside.